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Abstract

Ganymede is the only moon in our solar system known to have a large-scale intrinsic magnetic field, likely
generated in the moon’s metallic core. Initial analyses of Galileo spacecraft measurements concluded that
Ganymede’s intrinsic magnetic field is dominated by a magnetic dipole and that quadrupolar contributions are
exceptionally weak. These findings have influenced the development of models for Ganymede’s core dynamo over
the past two decades, some concluding that Ganymede’s dynamo is limited to the innermost part of Ganymede’s
core. Here, we reassess Ganymede’s internal field contributions based on the magnetic measurements from close
Galileo flybys of Ganymede (G1, G2, G7, G8, G28, and G29), adding the recent Juno flyby. We find that presently
available data cannot constrain Ganymede’s quadrupole moment, as we demonstrate by constructing models with a
range of quadrupole moments, including relative values comparable to those at the Earth. As a consequence, global
analysis of available data cannot constrain the spatial limits of Ganymede’s core dynamo. Incorporating ocean
induction for a range of Ganymede ocean models indicates that ocean induction may be present, but that available
magnetic data cannot discern between end-member cases for Ganymede ocean models.

Unified Astronomy Thesaurus concepts: Ganymede (2188); Magnetic fields (994); Planetary cores (1247)

1. Introduction

Ganymede’s intrinsic magnetic field, identified by measure-
ments from the Galileo spacecraft (Kivelson et al. 1996), makes
it the only moon in the solar system with a magnetic field that is
sufficiently strong to create a global magnetosphere. Schubert
et al. (1996) and Sarson et al. (1997) argued that Ganymede’s
magnetic field is generated by a dynamo inside Gany-
mede’s core.

Kivelson et al. (2002) derived two spherical harmonic
models for Ganymede’s internal magnetic field. The first
described Ganymede’s internal magnetic field as a super-
position of an internal dipolar and quadrupolar field (spherical
harmonic degrees 1 and 2; see Section 2). The second replaced
the quadrupolar field with an induced dipolar field inferred to
result from electric currents induced in Ganymede’s putative,
electrically conductive ocean by oscillations in the magnetic
field applied by Jupiter. Because both representations fit the
data similarly, but the model with the induced field used fewer
parameters, Kivelson et al. (2002) preferred the induced model
over the quadrupolar model. A spherical harmonic model of
Weber et al. (2022), which included new flyby measurements
by Juno, found a similarly weak quadrupolar contribution.
Their quadrupolar model provided a minimally improved fit to
the data compared to a purely dipolar model. Thus, Weber et al.
(2022) also favored their purely dipolar model over their
dipolar plus quadrupolar model.

Saur et al. (2015) provided independent support for an
induced magnetic field from Ganymede’s ocean. They found
that induction within the ocean decreased the predicted rocking
of Ganymede’s auroral ovals from about 5°, to closer to the
observed 2°. Saur et al. (2015) determined that the observed
reduction in rocking is consistent with an ocean with electrical
conductivity of at least 0.09 S m−1 that extends to relatively
close to the surface (<30 km thick ice shell). They concluded
that the presence of an induced field implies that the
quadrupole moment determined by Kivelson et al. (2002)
gives an upper bound on Ganymede’s true quadrupolar field
strength.
Some, but not all, thermal evolution and dynamo models for

Ganymede’s magnetic field (e.g., Hauck et al. 2006; Bland
et al. 2008; Zhan & Schubert 2012; Christensen 2015a, 2015b;
Rückriemen et al. 2015) have been influenced by these results.
One interpretation of the small quadrupole-to-dipole ratio is
that Ganymede’s dynamo source radius is only 130 km (about
0.05rG; Kivelson et al. 2002). This would limit the core
dynamo to the innermost part of Ganymede’s core, which is
estimated to have a radius of between 650 and 900 km (about
0.25rG to 0.34rG; Schubert et al. 2004). Kivelson et al. (2002)
cautioned against overinterpreting their source radius results.
Such a reported source radius is likely unreliable because
dipole and quadrupole terms of core magnetic fields tend to not
fit the trend observed in higher-degree powers. Estimations of
source radii from degree powers are typically done using
harmonics of degree 3 and greater (Lowes 1974).
The goal of this work is to assess whether presently available

magnetic field data can constrain the quadrupolar component of
Ganymede’s magnetic field and whether it is indeed excep-
tionally weak compared with the magnetic fields of other
planetary bodies in our solar system, with the exception of
Saturn (Christensen 2015a). A finding that this may not be the
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case would have a substantial impact on dynamo models for
Ganymede.

We construct a range of models from Galileo and Juno data
using the approach described in Section 2 to examine the
uncertainty in the relative powers of the dipolar and
quadrupolar components of Ganymede’s core magnetic field
(Section 3). In Section 4, we discuss the consequences of these
uncertainties on constraining dynamo models. We use Galileo
flybys G1, G2, G7, G8, G28, and G29, as well as Juno flyby
J34 (Figure 1). We do not use Galileo flybys G9 and G12,
because they were too far from Ganymede to provide a suitable
sampling of the intrinsic field. Here, we use the term “internal
magnetic field” for any magnetic field with sources inside the
planetary body. Internal magnetic fields thus include core
dynamo magnetic fields (“intrinsic fields”) as well as magnetic
fields induced inside a planetary body by time-varying external
fields. We assess whether induced magnetic fields affect our
results by modeling and subtracting such fields for a range of
Ganymede internal structures (Section 2.2).

2. Methods

To calculate the intrinsic contributions of Ganymede’s
magnetic field, we adopt an approach analogous to that of
Kivelson et al. (2002). We represent the magnetic field within
Ganymede’s magnetopause as a superposition of three
contributions: Ganymede’s internal field Bint (including
intrinsic and induced fields), Jupiter’s magnetospheric field
BJ, and a time-varying external field BU capturing fields
arising, for example, from Ganymede magnetopause currents:

( )= + +B B B B . 1J Uint

In Section 2.1, we discuss the spherical harmonic model of
Ganymede’s internal magnetic field Bint and our modeling of
BJ and BU. Interpretations of Ganymede’s dynamo are drawn
from the results for Bint, as described in Section 4. In a first step
(Section 2.1), we assume that our internal magnetic field is
dominated by a core dynamo (intrinsic) field that is static over
the time period of the observations. In Section 2.2, our internal
magnetic field model Bint additionally contains a time-
dependent field Bind

—the expected induced magnetic field
arising from induction in Ganymede’s ocean.

2.1. Spherical Harmonic Models of Ganymede’s
Magnetospheric Field

Planetary magnetic fields Bint originating from inside a
planetary body can be described as the spatial derivative of a
scalar magnetic potential V:
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if no external magnetic fields and no magnetic sources are
present in the region of representation. In Equation (2), the
variables r, θ, and f are the radius, colatitude, and east
longitude, Pl

m are the Schmidt semi-normalized associated
Legendre functions for spherical harmonic degree l and orderm
(e.g., Blakely 1995; Winch et al. 2005), and rp is the planetary
body’s radius; for Ganymede, rp= rG= 2631.2 km. The
smallest spatial scale described by such a representation is
given by the maximum spherical harmonic degree Lmax, which
also determines the number of model parameters—the Gauss
coefficients gl

m and hl
m for Bint. The power per spatial length

scale of the magnetic field evaluated at the surface of the
planetary body is represented by the Mauersberger–Lowes
spherical harmonic power spectrum:
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In all of our analysis, we use IAU coordinates for
Ganymede. In their analysis, Kivelson et al. (2002) used
Ganymede-centric G-Phi-Omega (GPhiO) coordinates, in
which the x-axis is aligned with the direction of corotational
flow, the z-axis is parallel to the Jovian spin axis, and the y-axis
completes the right-handed set (roughly toward Jupiter’s
center). Because Ganymede’s orbit has nonzero inclination
and eccentricity, the GPhiO coordinate system varies over time
with respect to a Ganymede-fixed coordinate system. Gany-
mede’s IAU coordinates have the x-axis directed roughly
toward Jupiter’s center (oriented from Ganymede’s center to a
specific surface feature on Ganymede), the z-axis parallel to
Ganymede’s spin axis, and the y-axis completing the right-
handed set (roughly opposite the orbital velocity). The
spherical version of the IAU coordinates is referred to in
Galileo data as GSPRH. The GPhiO x–y plane is approximately
a 90° rotation about the IAU z-axis of the IAU x–y plane, and
the z-axes are nearly aligned, with these differences varying
throughout Ganymede’s orbit. Because IAU coordinates are
fixed to the body, they are the most natural choice for
representing Ganymede’s core dynamo (intrinsic) field, as
intrinsic magnetic moments are generally assumed to be fixed
to the orientation of the metallic core, and we thus use the
GSPRH system here. We note that external currents align with
the GPhiO coordinate system, which may thus be better suited
to express external fields. The practical differences between the
IAU and GPhiO coordinate system is small and thus only
minimally affects the outcome of our analysis.
Before solving for a representation of Ganymede’s internal

magnetic field Bint and the time-varying external magnetic field
BU within Ganymede’s magnetopause, we subtract Jupiter’s
magnetic field BJ from the data. In this work, we model each

Figure 1. Spacecraft tracks for Galileo (G1–G29) and Juno (J34) for the time
ranges in Table 1. A Mollweide projection is used for Ganymede’s IAU
coordinate system. The map is centered on Ganymede’s sub-Jovian point, with
Ganymede’s leading hemisphere on the left.
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component of Jupiter’s magnetic field Bx
J , By

J , and Bz
J as a

linear function of time for each flyby. The slopes of the linear
approximation depend on the spacecraft velocity as well as
temporal changes in the external field. This linear representa-
tion is a fair approximation over the roughly 0.3 hr each
spacecraft spends within Ganymede’s magnetosphere on each
flyby, as this timescale is much shorter than the main periods of
oscillation from Jupiter’s field: the synodic period relative to
Jupiter’s rotation (10.5 hr) and Ganymede’s orbital period
(171.7 hr). After accounting for the differences in coordinate
systems used, we obtain approximately equivalent values for
the mean of BJ as those of Kivelson et al. (2002) for most
flybys (cf. Table 1 with Table 1 of Kivelson et al. 2002). We
estimate transition times into and out of Ganymede’s magneto-
sphere based on observed changes of the magnetic field
direction in the data (Figure 2). The ranges of time over which
we include measurements for our analysis (Table 1) are well
within our estimations of the extent of Ganymede’s magneto-
sphere (Figure 2) and are chosen to minimize contamination
from the dynamic interactions between the Jovian plasma and
Ganymede’s magnetosphere (Paty & Winglee 2004; Jia et al.
2009; Collinson et al. 2018). Such contaminations are visible in
the data as high-frequency fluctuations (Figure 2). The range
for the Juno flyby is shorter than the ranges for the Galileo
flybys because Juno traveled through Ganymede’s magneto-
sphere at a higher velocity.

Following the approach of Kivelson et al. (2002), we model
external fields BU (containing, e.g., magnetopause fields)
within Ganymede’s magnetosphere as constant and uniform
for each flyby. We note that, per flyby, we have two different
external fields: Jupiter’s field BJ, which we subtract from the
data before analysis, and the external field BU, which we
calculate together with the spherical harmonic coefficients.
Alternatively, a combined external field BU+BJ could be
calculated along with the spherical harmonic coefficients
instead of removing BJ

first; we use the latter procedure for
the most direct comparison of our work with prior studies. We
calculate the spherical harmonic coefficients gl

m and hl
m for Bint

and the constant values for BU from the data (Figure 2) by first
subtracting Jupiter’s field BJ (Table 1) from each flyby, then
simultaneously solving for the internal spherical harmonic
coefficients gl

m and hl
m as well as for each flyby’s uniform

(external) field values Bx
U , By

U , and Bz
U using a least-squares

approach. Unlike Kivelson et al. (2002), we did not weight
each flyby individually in our least-squares calculations.

2.2. Induced Fields

Oscillations in Jupiter’s magnetic field as observed in
Ganymede’s reference frame give rise to induced magnetic
moments inside Ganymede’s conducting interior, primarily as
an oscillating dipole moment (Styczinski et al. 2022). The
intrinsic (core dynamo) magnetic moments of Ganymede are
independent from the induced magnetic moments, but both are
part of Ganymede’s internal magnetic fieldBint. As a
consequence, contributions from induction Bind to the internal
fieldBint could provide a source of systematic error in our
analysis. To assess this error, we evaluate the induced magnetic
field expected for plausible geophysical models of Ganymede’s
interior, including the hydrosphere. We subtract these induced
fields from the spacecraft measurements along with the
background field of Jupiter, prior to our least-squares fit for
the intrinsic moments. The results of these analyses are then
compared to the results from our analysis with the induction
models omitted.
For the purpose of modeling the expected induced fields, we

use the JRM33 model for Jupiter’s intrinsic field (Connerney
et al. 2022) along with the current sheet model of Connerney
et al. (2020) to evaluate the strength of magnetic excitations as
a function of frequency at Ganymede’s location. For
Ganymede’s hydrospheric interior structure, we use the open-
source PlanetProfile framework to generate depth-dependent
electrical conductivity models for high- and low-salinity ocean
cases (Vance et al. 2021), with ocean waters containing 10 wt%
(“high” model) and 1 wt% (“low” model)MgSO4, respectively,
in addition to a model analogous to that of Saur et al. (2015),
with a uniformly conducting ocean of conductivity 0.5 S m−1

(“simple” model). For these three models, the ice shell
thicknesses are approximately 25 km, 94 km, and 120 km,
respectively. Whereas the simple model has uniform con-
ductivity in the ocean, the other models use depth-dependent
conductivities, evaluated as a function of temperature and
pressure based on a fit to laboratory measurements of MgSO4

solutions (Vance et al. 2018). The induced field of Ganymede
is evaluated as a function of time at the spacecraft locations
using the input excitation moments and conductivity structure
with the open-source MoonMag package (Styczinski 2022a).
For simplicity, we assume Ganymede’s ocean to be spherically
symmetric with respect to Ganymede’s IAU reference frame,
and neglect induction from layers deeper than the ocean, which
are likely to be well screened by the ocean.
We incorporate these induced field models by subtracting

their values at the data locations and times from the Galileo and

Table 1
Time Ranges and Jupiter’s Magnetic Field for Each Flyby of Galileo and Juno

Flyby Date Start Finish Bx
J mn (slp) By

J mn (slp) Bz
J mn (slp)

G1 1996 Jun 27 06:24:56 06:35:58 –78 (–0.2) 18 (1.5) –71 (0.5)
G2 1996 Sep 6 18:57:38 19:05:27 –69 (–0.4) –11 (0.4) –89 (0.0)
G7 1997 Apr 5 07:07:53 07:17:52 73 (0.0) –0.5 (–0.2) –79 (0.0)
G8 1997 May 5 15:53:42 15:57:51 –7 (1.0) 10 (0.0) –86 (0.0)
G28 2000 May 20 10:08:05 10:12:19 78 (0.4) 3.5 (–0.3) –75 (–0.1)
G29 2000 Dec 28 08:19:49 08:34:19 –77 (0.2) 11 (0.1) –80 (–0.2)
J34 2021 Jun 7 16:53:40 16:59:00 22 (0.9) 12 (–0.1) –76 (–0.5)

Notes. Jupiter magnetic fields are given in Ganymede-centric IAU coordinates in nT. The ranges for the Galileo flybys G1–G29 identify the times used by Kivelson
et al. (2002), and J34 identifies the times used by Weber et al. (2022) to fit the magnetic moments; we use the same times in our calculations for Ganymede’s internal
magnetic field. Linearly interpolated Jupiter background fields Bx

J , By
J , and Bz

J are given as mean within the indicated times (“mn”) in nT and slope (“slp”) in nT
minute−1.
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Juno data before solving for the intrinsic field models. In
addition to these three hydrospheric structure models, “high,”
“low,” and “simple,” we also consider the case with ocean
induction magnetic field (“–” model).

3. Results

For each ocean induction model (“–,” “high,” “low,” and
“simple”; see Section 2.2), we calculate spherical harmonic

Figure 2. Raw data of the flybys of Galileo and Juno, including data before and after the encounter with Ganymede’s magnetosphere in IAU coordinates. Dashed lines
show Jupiter’s background field (Table 1). Dotted vertical lines show estimated transitions into and out of Ganymede’s magnetosphere, based on visually determined
abrupt changes in the magnetic field measurements. The data time ranges used in our calculations for Ganymede’s internal field are indicated by white bands and were
taken from Kivelson et al. (2002) and Weber et al. (2022). Each panel has its own y-axis range, in nT for the magnetic data and km for the altitude data. Ranges are
indicated in the top-left and bottom-left of each panel. Altitudes are above Ganymede’s mean radius of rG = 2631.2 km; the bottom of each altitude panel is 0, and the
closest approach altitude of each flyby is labeled.
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models for two different maximum spherical harmonic degrees,
=L 1max and =L 2max , for Ganymede’s internal magnetic

field Bint using a least-squares approach without regularization.
To assess how well the available data constrain the spherical
harmonic coefficients, we conduct a correlation analysis (see
the Appendix) of the linear system of equations that determines
the spherical harmonic coefficients from the data locations
(Figure 1). The corresponding correlation matrix (Figure 3)
shows substantial correlations among coefficients. These
correlations allow the signal to be fit equally well by a range
of linear combinations of these coefficients.

Motivated by these strong correlations, we additionally
assess two models, each with a fixed chosen spherical harmonic
coefficient, to explore the space of models allowable by the
data. We also use singular value decomposition (SVD), similar
to Connerney (1981) and Burton et al. (2009, 2010), and
remove a singular value and its corresponding columns of the
orthogonal matrices in a generalized inversion calculation:

1. Dipole-only model ( =L 1max ): “L1.”
2. Dipole + quadrupole ( =L 2max ): “L2A.”
3. Dipole + quadrupole ( =L 2max ) with = -h 472

1

nT: “L2B.”
4. Dipole + quadrupole ( =L 2max ) with =g 302

2

nT: “L2C.”
5. Dipole + quadrupole ( =L 2max ) with singular value

number 24 removed: “L2D.”
6. Dipole + quadrupole ( =L 2max ) with singular value

number 25 removed: “L2E.”

For models L2B and L2C, we choose the fixed values for the
spherical harmonic coefficients h2

1 and g2
2, respectively, and

solve for the remaining coefficients using a least-squares
approach without regularization. The specific values for h2

1 and
g2

2 are based on trial-and-error searches to minimize each
model’s data misfit and maximize its quadrupole power. For
model L2D, we select for removal the singular value for which
after removal the generalized inversion calculation yields the

lowest data misfit compared to other choices of singular values.
For model L2E, we select for removal a singular value leading
to a higher quadrupolar strength. For each of L1, L2A, L2B,
L2C, L2D, and L2E, we calculate a spherical harmonic model
for each of the four ocean-induction models “–,” “high,” “low,”
and “simple,” leading to a total of 24 models, which we name
by appending the ocean model name to the spherical harmonic
model name: “L1–,” “L2Asimple,” “L2Bhigh,” etc.
To assess the uncertainty for each of our 24 models, we

calculate 100 least-squares solutions, each for a 50% random
subset of the data, and we report the mean spherical harmonic
model and the standard deviation. All spherical harmonic
models use the Galileo flybys G1, G2, G7, G8, G28, and G29,
as well as Juno’s flyby J34, collected on 2021 June 7 (Figure 2)
for the time ranges indicated in Table 1.
The resulting uniform external fields BU of our spherical

harmonic models without including an ocean induction model
(“–”) agree with each other (Table 2). For the spherical
harmonic coefficients gl

m and hl
m of these three models

(Table 3), we observe quite different l= 2 coefficients, in
particular for g2

0, h2
1, and g2

2. This disagreement among
coefficients derived for the same choice of Lmax is substantially
larger than the standard deviation of each of these coefficients.
For these models that neglect an ocean induction field, we

observe small differences between their spatial patterns
(Figure 4), in particular at the magnetic equator and in the
southern hemisphere.
To assess whether any of the spherical harmonic models

neglecting induction are favored based on the data available,
we calculate the root mean square error (RMSE) of the data
misfit from the difference between the calculated Bint+BU

(Tables 2–3, Equations (2)–(3), using the mean coefficients)
and the raw data after subtraction of BJ (Table 1). The overall
RMSE of the least-squares models L2A–, L2B–, and L2C– are
within 0.3 nT of each other (Table 4)—a small difference
compared to the typical field magnitudes of ∼500 nT near
closest approach. The SVD models L2D– and L2E– have
higher RMSE (Table 4).
Comparisons between spacecraft data after subtracting BJ

and modeled data Bint+BU (Figures 5 and 6) without
incorporating ocean induction (“–”) display long-wavelength
differences in all components of all flybys shown. Kivelson
et al. (2002) reported long-wavelength misfits in their GPhiO
Bx components, which approximately correspond to the
negative of our By components. The authors interpreted these
misfits to result from external fields, specifically due to Alfvén
wing bendback that was modeled neither in their approach nor
ours. The models L2A– and L2B– show comparable structures
in their misfits (Figure 6).
We observe that taking oceanic induction into account using

the three proposed Ganymede internal structures “high,” “low,”
and “simple” slightly increases the RMSE of the six models L1,
L2A, L2B, L2C, L2D, and L2E (Table 5). In general, the
induction model “high” leads to the strongest increase in
RMSE, whereas the effects of “low” and “simple” are similar to
each other.

4. Discussion

Previous spherical harmonic models of Ganymede’s internal
magnetic field were calculated from flybys G1, G2, G28
(Kivelson et al. 2002), and J34 (Weber et al. 2022). In this
work, we use additional flybys. Repeating our calculations with

Figure 3. Correlation matrix for the spherical harmonic coefficients up to
=L 2max for the available flyby data (Figure 2, Table 1). For well-resolved

coefficients, all cells off the diagonal must be close to zero (white). Red and
blue cells off the diagonal indicate strong correlations and anticorrelations that
prevent resolution of the intrinsic moments for Ganymede from existing
flyby data.
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only G1, G2, G28, and J34 (to compare with past studies) has a
negligible effect on our results.

We found a range of intrinsic magnetic field models for
Ganymede that fit the data similarly well and which use the
same maximum spherical harmonic degree 2. This result
indicates that for presently available data, there is a large
uncertainty in the quadrupolar spherical harmonic coefficients.
To assess whether selecting a model resolving the quadrupolar
moment (L2A, L2B, L2C, L2D, L2E) over a purely dipolar

model (L1) is justified, we carry out a leave-one-out cross-
validation. For each model, we omit one of the flybys, obtain
the least-squares solution from the remaining flybys, and then
calculate the RMSE of the resulting model for the omitted
flyby, using the BU values of Table 2. Repeating this approach
for each flyby yields seven RMSE per model (one RMSE for
each flyby). We calculate the “leave-one-out cross-validation”
for a model as the rms of these seven RMSE. If a model has a
high leave-one-out cross-validation, then this model likely

Table 2
Uniform Magnetic Field Components

Model Comp G1 G2 G7 G8 G28 G29 J34

L1– Bx
U 21 (0) 21 (0) 1 (0) 5 (0) 10 (0) 6 (0) –3 (1)

By
U 33 (0) 77 (0) 43 (0) 54 (0) –39 (1) 44 (0) 65 (1)

Bz
U –15 (0) 23 (0) 12 (0) 90 (0) 73 (0) 10 (0) –36 (0)

L2A– Bx
U 20 (0) 18 (0) 1 (0) 1 (0) –1 (0) 6 (0) –3 (0)

By
U 30 (0) 58 (0) 41 (0) 74 (1) –52 (1) 41 (0) 61 (1)

Bz
U –13 (0) 22 (0) 12 (0) 96 (0) 46 (1) 11 (0) –37 (1)

L2B– Bx
U 21 (0) 16 (0) 1 (0) 0 (0) –1 (0) 6 (0) –2 (1)

By
U 35 (0) 47 (0) 41 (0) 83 (1) –70 (1) 41 (0) 63 (1)

Bz
U –7 (0) 15 (0) 12 (0) 95 (1) 38 (1) 10 (0) –33 (0)

L2C– Bx
U 21 (0) 17 (0) 1 (0) 1 (0) –1 (0) 6 (0) –2 (1)

By
U 37 (0) 54 (1) 42 (0) 80 (1) –50 (0) 43 (0) 67 (0)

Bz
U –6 (0) 8 (0) 12 (0) 99 (0) 39 (1) 9 (0) –34 (0)

L2D– Bx
U 16 (1) 20 (0) 1 (0) –3 (0) –8 (1) 6 (0) 5 (1)

By
U 19 (1) 84 (3) 42 (0) 68 (1) –38 (2) 44 (0) 57 (1)

Bz
U 2 (2) 13 (1) 15 (0) 99 (1) 43 (1) 13 (0) –34 (1)

L2E– Bx
U 13 (0) 27 (1) 0 (0) 12 (1) 10 (1) 6 (0) 2 (1)

By
U 30 (0) 75 (1) 42 (0) 78 (0) –28 (2) 44 (0) 56 (1)

Bz
U –8 (0) 10 (1) 13 (0) 104 (1) 30 (1) 11 (0) –23 (1)

Notes. Values, in nT, rounded to the nearest integer represent the model averages. One standard deviation rounded to the nearest integer is indicated in parentheses.

Table 3
Spherical Harmonic Coefficients of Our Intrinsic Magnetic Field Models Bint

Model g1
0 g1

1 g2
0 g2

1 g2
2

h1
1 h2

1 h2
2

L1– –725.3 (0.2) 74.2 (0.3) 0 (0*) 0 (0*) 0 (0*)
19.5 (0.4) 0 (0*) 0 (0*)

L2A– –761.4 (1.0) 58.9 (0.5) 21.4 (0.6) 4.5 (0.4) 6.8 (0.4)
12.0 (0.7) –20.8 (0.5) –16.5 (0.3)

L2B– –766.9 (1.0) 61.2 (0.4) 21.8 (0.6) –0.4 (0.3) 18.1 (0.5)
23.5 (0.8) –47.0 (0*) –21.3 (0.2)

L2C– –752.8 (1.1) 64.4 (0.5) 16.8 (0.7) –0.7 (0.4) 30.0 (0*)
16.4 (0.7) –37.3 (0.3) –21.7 (0.3)

L2D– –760.0 (1.0) 59.5 (0.5) 37.9 (1.8) 4.8 (0.4) 19.5 (1.4)
20.5 (1.0) –3.3 (1.9) –31.8 (1.5)

L2E– –758.5 (1.0) 62.2 (0.3) 30.1 (0.6) 27.8 (1.25) 41.6 (1.1)
10.8 (0.8) –18.0 (0.7) 25.1 (1.5)

Notes. Values, in nT, represent the model averages, with one standard deviation indicated in parentheses. The standard deviations marked with an asterisk * are zero
because the corresponding coefficients are set to a fixed value.
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overfits the available data compared to a model with a lower
leave-one-out cross-validation. We find that model L1 has the
lowest leave-one-out cross-validation (Table 6). Thus, models
that use a quadrupole moment overfit the data. The leave-one-
out cross-validation values for the quadrupolar models are
similar, with the models for fixed coefficients (L2B, L2C)
having lower values compared to the SVD-derived models
(L2D, L2E).

A possible approach to reduce the spread of allowable
quadrupolar moments could be to impose regularization (e.g.,
Bloxham et al. 1989; Parker 1994; Johnson & Constable 1995;
Holme & Bloxham 1996a, 1996b; Uno et al. 2009).
Regularization allows the construction of smooth, minimally

structured models. Unfortunately, for sparse data coverage such
regularization affects the power spectrum, even at the low
spherical harmonic degrees that we study (e.g., Uno et al. 2009,
their Figure 3(c)). One of the goals of our study is to assess the
relative powers of the spherical harmonic degrees of Gany-
mede’s intrinsic field. Thus, regularization would predetermine
the very information we aim to extract.
The range of presented models for the intrinsic field

(Section 3) limits what conclusions can be drawn from the
presently available magnetic field data for Ganymede. For the
intrinsic field of Kivelson et al. (2002), Christensen (2015a,
2015b) calculated a quadrupole-to-dipole ratio (R(2)/R(1) for
R(l) in Equation (4)) of 0.04 for a presumed core–mantle
boundary (CMB) radius of 658 km, corresponding to 0.25rG.
Christensen concluded that this was an exceptionally low
quadrupole-to-dipole ratio compared to most planets in our
solar system, with the possible exception of Saturn. For our
model L2A– we obtain a similar ratio for a CMB radius of
0.25rG (Table 7). For our model L2B–, however, we obtain a
substantially larger ratio of 0.14 (Table 7). This ratio is equal to
Earth’s core magnetic field quadrupole-to-dipole ratio at
Earth’s CMB (Christensen 2015a). Care must be taken when
using quadrupole-to-dipole ratios to determine the radius of a
core dynamo. The dipole and quadrupole strengths tend to not
follow the trend observed in the powers R(l) of spherical
harmonic degrees l� 3 (Lowes 1974). Thus, calculating a
dynamo radius from analytically derived power spectra (such

Figure 4. Radial component of the internal magnetic field models Bint from Table 3 (no ocean induction) plotted on Ganymede’s surface (rG = 2631.2 km), together
with the corresponding data locations that were used in the internal field calculations. Black dashed lines indicate magnetic equators. (a) L1–, (b) L2A–, (c) L2B–, (d)
L2C–, (e) L2D–, (f) L2E–.

Table 4
RMSE for Mean Spherical Harmonic Models

Model G1 G2 G28 J34 Total

L1– 6.0 4.3 12.4 8.2 7.0
L2A– 5.3 3.5 9.5 8.4 6.2
L2B– 5.4 4.4 10.7 7.4 6.5
L2C– 6.2 3.7 9.9 8.2 6.5
L2D– 10.6 9.0 9.8 8.1 7.8
L2E– 12.7 9.7 14.4 9.7 9.7

Notes. Values given in nT. RMSE are given for select flybys and in total,
calculated as the rms of the RMSE of G1, G2, G7, G8, G28, G29, and J34.
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as, e.g., Voorhies et al. 2002) using the quadrupole-to-dipole
ratio yields spurious results. To avoid this issue, Christensen
(2015a, 2015b) instead calculated quadrupole-to-dipole ratios
from the outcomes of magnetohydrodynamic simulations.
Christensen determined which parameters used in his simula-
tions yielded comparable values to the results of Kivelson et al.
(2002). Our inferred uncertainty of the spherical harmonic
coefficients for Ganymede’s intrinsic field thus allows for more
of the dynamo models of Christensen (2015a, 2015b), and not
only for a subset with low quadrupole-to-dipole ratio. This
analysis broadens the range of explanations for Ganymede’s

dynamo. Our intrinsic field models taking ocean induction into
account produced slightly lower quadrupole-to-dipole ratios
compared to models without ocean induction. This indicates
that ocean induction may contribute to the observed quad-
rupolar power, but even with a high-salinity ocean Ganymede’s
quadrupole-to-dipole ratio remains poorly constrained
(Table 7).
We use a least-squares approach to solve for spherical

harmonic coefficients from the available data as well as a SVD
generalized inversion. Other methods may yield different
coefficients. We note that the existence of our solutions

Figure 5. Data after subtraction of BJ (gray solid lines) and modeled data Bint+BU (black dashed lines) from models (a) L2A– and (b) L2B–, shown for flybys G1, G2,
G28, and J34.
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together with their data misfits, and the correlation analysis that
is governed by the spatial distribution of the data, provide
evidence for a range of possible spherical harmonic models, no
matter how these models were obtained. Thus, using more
sophisticated approaches to solve for global spherical harmonic
models would not resolve this uncertainty given the available
data. We acknowledge that our approach likely underestimates
the nonuniqueness of solving for quadrupolar components from
the presently available data, and we do not claim that our study
characterizes the full solution space. We demonstrate that there
exists at least one solution with a quadrupole-to-dipole ratio
similar to that of Earth and which fits the data equally well

(within 0.2 nT) compared to a solution with a substantially
smaller quadrupole-to-dipole ratio.
We emphasize that our goal is to study the uncertainty of

intrinsic spherical harmonic magnetic field models and the
effect of these uncertainties on interpreting dynamo models.
Because the expressions relating the data to the spherical
harmonic coefficients (Equations (2) and (3)) are linear, linear
combinations of the resulting spherical harmonic coefficients
for models with identically modeled ocean induction also solve
these equations, so long as the weights of the models in a linear
combination sum to unity. From linear combinations of our
models L2A– and L2B–, we construct models for which the

Figure 6. Differences between the spacecraft data and the modeled data in Figure 5 for (a) L2A– and (b) L2B–, shown for flybys G1, G2, G28, and J34.
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quadrupole-to-dipole ratio at 0.25rG cover the full range from
extremely low, to Jupiter-like (0.1; Christensen 2015a), to
Earth-like (0.14; Christensen 2015a; see Figure 7). The RMSE
values of these models are within 0.3 nT of each other—a small
difference considering typical field magnitudes of ∼500 nT.

The physical fidelity of our models is limited by the use of
uniform fields to represent the external field contributions BU

from plasma interactions with Ganymede’s magnetosphere.
Uniform external fields are an external field representation of

spherical harmonic degree 1. Plasma interactions will con-
tribute short-period fluctuations in the measured magnetic field,
essentially contributing systematic noise in the data. A spatially
varying potential field can be used to more accurately describe
the external field, but we do not expect that such a
representation would alter our conclusions as it would add
more variables to resolve and thus further reduce the
uniqueness of the solution, which we have already shown to
be too weak to draw conclusions about the power of the
quadrupole component.
The spatial differences between our models L2A–, L2B–,

and L2C– show that the area of greatest disagreement is in the
southern hemisphere, in particular the southern part of the
leading hemisphere (Figure 8). Additional flybys covering that
area may reduce the correlations among spherical harmonic
coefficients (Figure 3) and ultimately provide better constraints
on Ganymede’s core magnetic field.
We examine the effect of induced fields from Ganymede’s

putative ocean on our results by forward modeling plausible
interior structures and subtracting the induced field expected
from each model from the flyby measurements. Taking ocean
induction into account reduces the leave-one-out cross-valida-
tion of our models (Table 6). We interpret this as an indication
that ocean induction is present in the magnetic field data.
However, available data cannot distinguish between our three
end-member ocean models “high,” “low,” and “simple” (see
Section 2.2). Solving for a dipole as well as a quadrupole
moment, our models L2B and L2C with any of the three ocean
induction models yields a similar RMSE as the corresponding
ocean induction for model L2A (Table 5). These results
contrast with the interpretation of Saur et al. (2015) that
induced fields on Ganymede meant that the quadrupole
strengths of Kivelson et al. (2002) were an upper bound.
Instead, we find that presently available data simply cannot
constrain Ganymede’s intrinsic quadrupolar moment.

5. Conclusions

Our results demonstrate that presently available data cannot
sufficiently constrain the quadrupole power of Ganymede’s
core magnetic field globally. Our range of spherical harmonic
models indicates that a variety of dynamo models may be
plausible for Ganymede. We argue that a dynamo operating in
a substantial part of Ganymede’s core is plausible and may
present a simpler solution than a dynamo operating only within

Table 5
Total RMSE of Spherical Harmonic Models

Model Ocean Induction Model

– High Low Simple

L1 7.0 9.1 8.6 8.6
L2A 6.2 8.9 8.4 8.4
L2B 6.5 9.0 8.6 8.6
L2C 6.5 9.0 8.5 8.5
L2D 7.8 10.1 9.7 9.7
L2E 9.7 11.5 11.2 11.2

Notes. Values in nT. The symbol “–” indicates no ocean induction; “high” and
“low” are with a high- and low-salinity ocean, respectively; “simple” is for an
ocean with a uniform conductivity (see Section 2.2).

Table 6
Leave-one-out Cross-validation

Model Ocean Induction Model

– High Low Simple

L1 7.8 6.9 6.9 6.9
L2A 17.1 15.2 15.3 15.2
L2B 16.7 15.6 15.7 15.7
L2C 14.9 15.5 15.5 15.5
L2D 20.2 19.7 19.5 19.4
L2E 21.8 19.8 19.8 19.8

Notes. Values in nT, obtained by skipping individual flybys (see text). The
symbol “–” indicates that no ocean induction model was used; “high,” “low,”
and “simple” indicate the ocean induction models described in Section 2.2.

Table 7
Quadrupole-to-dipole Ratios

Model rG 0.3rG 0.25rG

L2A– 0.003 0.04 0.05
L2B– 0.009 0.10 0.14
L2C– 0.008 0.09 0.13
L2D– 0.008 0.08 0.12
L2E– 0.010 0.13 0.19
L2A+ 0.002 0.02 0.04
L2B+ 0.007 0.09 0.13
L2C+ 0.006 0.07 0.10
L2D+ 0.006 0.06 0.09
L2E+ 0.010 0.12 0.17

Notes. The symbol “+” indicates with and the symbol “–” without taking into
account ocean induction. The quadrupole-to-dipole ratios rounded to
significant digits were the same for the three different ocean induction models,
“high,” “low,” and “simple,” thus we represent them all with the model
abbreviations L2A+, L2B+, L2C+, L2D+, and L2E+.

Figure 7. Quadrupole-to-dipole ratio (Q/D) at 0.25rG for linear combinations
of models L2A– and L2B–, with weights summing to unity.
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a small fraction of Ganymede’s core. Presently available data
cannot distinguish between these possibilities. Available data
allow for ocean induction but cannot discern a best fit from
among the range of ocean induction models we tested. Once
JUICE orbital data of Ganymede become available (Grasset
et al. 2013), we expect that Ganymede’s core magnetic field
will be robustly determined to higher spherical harmonic
degrees, and assessment of ocean induction will become
possible, providing scientific closure on these research
questions.
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Appendix
Correlation Analysis

To obtain the spherical harmonic coefficients gl
m and hl

m from
the three components of the magnetic field dataBx, By, and Bz,
we combine Equations (2) and (3) and use the measurements of
Bint as the known right-hand side b. In this linear system of
equations, the evaluated spherical harmonics at the data
locations r, θ, and f constitute the matrix A, and the
coefficients gl

m and hl
m are the unknowns u in

( )=u bA . A1

Because the number of data locations is greater than the
number of unknowns, this system of equations is solved in a
least-squares sense. Although this system of equations is
overdetermined, the constraints on the coefficients (unknowns)
may not be uncorrelated. To test the correlation between the
unknowns, we conduct a correlation analysis of the columns Ai

of the matrix Ac. We consider the entries of each column as
evaluations of a random variable and measure the correlations
between the columns as
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where N is the number of data locations multiplied by 3,
because we have three vector components per data location, μi
is the mean of the ith column of matrix A, and σi is the standard
deviation of the ith column of matrix A. The resulting
correlation values ρi,j are a measure of how strongly the
unknowns ui and uj are correlated based on the given data
locations, i.e., how much the solution for one unknown is
affected by the solution for the other. Under ideal data
distributions, the unknowns are uncorrelated, because the
analytical multipole moments are mutually orthogonal.
Figure 3 shows the correlation values ρi,j for the spherical

harmonic coefficients based on the data locations. The substantial
correlations observed indicate that different solutions can fit the
data values similarly well. Note that we did not take the uniform
fields BU into account in our correlation analysis.
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