
332 The Leading Edge May 2020	 		 Special Section: Near-surface imaging and modeling

GPRPy: Open-source ground-penetrating radar
processing and visualization software

Abstract
GPRPy is an open-source ground-penetrating radar software

compatible with a range of ground-penetrating radar systems.
Data processing and plotting can be performed by using graphical
user interfaces or scripts that are generated automatically from
the graphical user interfaces. This makes learning the software
easy, and it enables researchers to share their scripts as part of a
publication to ensure reproducible research. GPRPy enables profile
data processing and visualization, velocity analysis, interpolation
of 3D data cubes from profile data, and 3D interpolation for
interfaces visible in multiple profiles. The software is written in
Python and runs on all major operating systems.

Introduction
Since its original patents a century ago, ground-penetrating

radar (GPR) has become one of the most popular methods to
image shallow subsurface structures. GPR owes its popularity to
relatively low cost in the field and high subsurface resolution
compared to other geophysical methods. As a result, GPR has
been a staple for archaeological surveys (e.g., Goodman and Piro,
2013; Urban et al., 2014), stratigraphy (e.g., Bristow and Jol, 2003;
Pitman et al., 2019), hydrology (e.g., Rubin and Hubbard, 2005;
Klotzsche et al., 2018), contaminant mapping (e.g., Wilson et al.,
2009), soil science (e.g., Butnor et al., 2003), glaciers and ice sheets
(e.g., Merz et al., 2015), civil engineering (e.g., Klysz and Balayssac,
2007; Lai et al., 2018), and ecosystems research (e.g., Paz et al.,
2017). Jol (2008) provides an excellent overview of theory and
applications of GPR.

Many GPR investigations do not require advanced processing
to yield useful results. Nevertheless, the majority of GPR research
publications use proprietary closed-source software provided by
the GPR system manufacturer or independent packages (Jol,
2008). Reliance on proprietary software has a number of inherent
disadvantages. First, the software has limited flexibility and
does not fully allow users to adapt it to their needs. Second,
reproducible research is limited. To recreate the processing steps
published in an article, researchers need to have access to the
proprietary software. This limitation will become increasingly
severe as publishers and funding agencies push for transparent
research. Third, courses teaching GPR processing are restricted
by access to proprietary software.

Open-source software aims to overcome these obstacles. In
recent years, a small number of open-source GPR processing and
visualization packages have become available. Among these
packages, MATGPR (Tzanis, 2006) is likely the most prominent.
It has been available for more than a decade and includes a graphical

Alain M. Plattner1

user interface (GUI). MATGPR recently became closed source,
but older open-source versions may still be available.

A disadvantage of MATGPR and other MATLAB-based
GPR programs is that they require MATLAB, a proprietary
software. Freely available MATLAB-like alternatives, such as
Octave (Eaton et al., 2019), are typically incompatible with
MATLAB GUIs. In general, GUIs greatly facilitate learning
processing software. However, if a software is purely GUI controlled
and cannot be automated, such as through computer scripts contain-
ing the processing and visualization steps, large-scale projects that
require processing a large number of profiles are rendered unneces-
sarily tedious, and reproducible research is made more difficult.

On the other end of the open-source GPR software spectrum
lies the recently published package RGPR (Huber and Hans,
2018), which is based on the programming language R. Instead
of using a GUI, RGPR requires investigators to write scripts in
R. Consequently, the learning curve for mastering RGPR is steep
for investigators with little programming experience.

Irlib (Wilson et al., 2013; Wilson, 2017), another open-source
GPR software, is Python based. It has a GUI for picking and
data filtering Blue System IceRadar data files, but it requires the
user to write Python scripts to process Sensors and Software (.dt1)
files. As is the case of RGPR, this may impede users with little
programming experience.

The aim of GPRPy is to provide a GPR processing and visualiza-
tion platform that is freely available, powerful, easy to use, program-
mable, expandable, and that facilitates reproducible research. GPRPy
is built on the free programming language Python (version 3). Hence,
it can be used without requiring a proprietary programming environ-
ment such as MATLAB. Python, and therefore GPRPy, are compat-
ible with a wide range of operating systems.

GPRPy’s data processing is optimized for speed and memory
consumption by making use of data structures and functions
from Python’s NumPy module. The implemented GUIs (one
for profile data processing and one for velocity analysis) simplify
learning the software. Both GPRPy GUIs have the ability to
automatically create Python scripts by internally storing the
processing steps used in the GUI. The automatically generated
Python scripts, together with the raw data, can be shared to
allow researchers to reproduce the data processing and visualiza-
tion steps carried out for an investigation. GPRPy is hosted on
a collaborative software-developing website given in the section
“Data and materials availability.” This allows the community
to use GPRPy as a base code for implementing their own data
processing procedures and to make them instantly available.
The current version of GPRPy can import radar data from

1University of Alabama, Tuscaloosa, Alabama, USA. E-mail: amplattner@ua.edu.

https://doi.org/10.1190/tle39050332.1

D
ow

nl
oa

de
d

07
/0

7/
20

 to
 6

8.
62

.2
27

.5
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:

10
.1

19
0/

tle
39

05
03

32
.1

http://crossmark.crossref.org/dialog/?doi=10.1190%2Ftle39050332.1&domain=pdf&date_stamp=2020-05-01

May 2020 The Leading Edge 333Special Section: Near-surface imaging and modeling

Sensors and Software GPR systems (.dt1 files), GSSI (.dzt files),
MALÅ (.rd3 files), and ENVI standard BSQ files. The remain-
der of this article highlights some of the currently implemented
processing and visualization procedures and provides data
processing examples.

Software design
The GPRPy software package consists of two GUIs, one for

profile data processing (Figure 1) and one for common-midpoint
(CMP) or wide-angle reflection and refraction (WARR) data
(Figure 2). The package also includes a series of functions for
more advanced processing, such as the generation of 3D data
cubes by interpolating profiles, interpolation of surfaces between
picked points, and merging profiles. The computer code for the
GUI is separated from the computer code that implements the
data processing and visualization. This separation allows users to
write Python code that directly accesses all of GPRPy’s capabilities
without needing to use the GUI. GPRPy exploits this separation
through its automatically generated scripts.

GPRPy’s constant-velocity f-k migration routine is incorporated
from the software package Irlib (Wilson et al., 2013; Wilson, 2017)

and is a Python translation of the original MATLAB code by
Margrave and Lamoureux (2019). This migration method was origi-
nally introduced by Stolt (1978) for seismic data processing. Migration
can remove artifacts resulting from arrivals that were not reflected
perpendicularly below the transmitter receiver midpoint (Yilmaz,
2001). Among other things, a migration procedure leads to collapsing
of hyperbolae caused by reflections from spatially confined objects,
transformation of bow ties into synclines, and correction of dipping
angles of reflectors. As a result, a migrated profile more closely
resembles a geologic cross section than an unmigrated profile.

Common-offset profiles. Common-offset profiling, the most
widely used GPR data acquisition scheme, involves moving trans-
mitter and receiver antennae with fixed separation (offset) along a
profile line. Three-dimensional data cubes are typically created by
running parallel and intersecting profiles, processing the profiles
individually, and then interpolating the processed profiles. GPRPy’s
profile GUI (Figure 1) enables the most commonly used processing
steps. Subsurface velocities can be estimated by fitting hyperbolae
to reflections from pipes or other spatially confined objects.
Structures visible in a profile can be picked from within the GUI
and exported into an ASCII file. If the profile has been topographi-

cally corrected using 3D coordinates, the
picked points will additionally be
exported as 3D coordinates, with loca-
tions interpolated between the 3D profile
coordinates. The 3D coordinates of the
picked points can later be used to create
surfaces interpolating the same reflector
that was imaged in different profiles. The
section “Interpolated picked reflectors”
shows an example of such an approach.
GPRPy can export profiles as 3D struc-
tured grid files, which can be visualized
with ParaView (Ayachit, 2015), MayaVi
(Ramachandran and Varoquaux, 2011),
or other 3D rendering programs capable
of reading VTK files.

Velocity analysis from CMP/WARR
data. All GPR studies require knowl-
edge of a subsurface velocity to trans-
form two-way traveltime to depth.
The time-to-depth transformation
currently implemented in GPRPy
assumes a single average velocity to
the target depth, such as the root mean
square (rms) velocity by Dix (1955).
This velocity can be obtained from
tables, by fitting hyperbolae to profiles
crossing buried pipes or other spatially
confined reflectors, or through CMP
or WARR surveys. In a CMP survey,
transmitter and receiver antennae are
placed on either side of a designated
midpoint and are subsequently moved
equidistantly away while recording
traces. In a WARR survey, either the

Figure 1. GUI for GPR common-offset profile data processing.

Figure 2. GUI for velocity analysis from CMP or WARR data. (a) Stacked amplitudes for hyperbolically shaped
arrival-time patterns. (b) Stacked amplitudes for linearly shaped arrival-time patterns. (c) CMP or WARR data.

D
ow

nl
oa

de
d

07
/0

7/
20

 to
 6

8.
62

.2
27

.5
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:

10
.1

19
0/

tle
39

05
03

32
.1

334 The Leading Edge May 2020	 		 Special Section: Near-surface imaging and modeling

transmitter or receiver antenna is fixed, and the other antenna
is moved increasingly away while recording traces. In WARR
and CMP data sets for flat topography, airwave and ground-
wave arrival times depend linearly on the antenna separation.
The slope of this linear relationship is 1/v, where v represents
the velocity of the air or the average velocity of the shallowest
portion of the ground. Reflections from horizontal interfaces
have a hyperbolic shape given by t = x2 + 4d 2 / vrms . Here, x
is the antennae separation, t is the two-way traveltime, d is the
depth to the horizontal reflector, and vrms is the average velocity
between the surface and reflecting interface. GPRPy’s velocity
analysis GUI for CMP or WARR data (Figure 2) enables users
to draw lines and hyperbolae on top of the data to estimate
velocities using a trial-and-error approach. A coherency analysis
presents an automatized approach for velocity determination.
The implemented stacked amplitude analysis calculates the
sum over all pixels in the CMP or WARR data that follow the
idealized linearly or hyperbolically shaped arrival-time pattern
for a given vrms and t0 . If all pixels along the theoretical line or
hyperbola have the same sign, such as when following a line
or hyperbola visible in the data, then the sum of the pixel values
has a large magnitude. On the other hand, if the pixel values
switch signs, for example when the theoretical line or hyperbola
crosses troughs and peaks of recorded waves, the resulting
stacked amplitude has a low absolute value. The center and left
panel of GPRPy’s CMP/WARR GUI, as shown in
Figures 2a and 2b, displays stacked amplitudes for linearly or
hyperbolically shaped arrival-time patterns, respectively, for
a chosen range of vrms and t0 .

Automatic script generation. While using either the GUI for
common-offset data or the GUI for CMP/WARR data, GPRPy
stores each processing step and can generate a Python script
containing the Python commands for each step. This script can
be run from the command line to reproduce all of the data import,
processing, visualization, and export steps. Users can edit indi-
vidual processing steps and rerun the analysis without needing
to repeat every step in the GUI. Such scripts, together with the
raw data, could be shared as part of a publication. Since GPRPy
is open source and can be installed on any system that can run
Python, data processing becomes fully reproducible. Another
advantage of automatically created scripts is that they can be used
to automatically apply the same processing to a number of profiles
(e.g., to create a 3D data cube).

Three-dimensional data. If a set of densely spaced and/or
intersecting profiles is available, GPRPy can create a 3D data
cube by interpolating the provided profiles and exporting the
resulting data cube as a VTK file. The section “Data cube inter-
polation” shows a nearest-neighbor interpolation of a dense grid
of 46 × 46 profiles collected for an archaeological study. When
multiple profiles are available but are not densely spaced, 3D
interpolation may not be suited, as it could create misleading
artifacts due to unevenly distributed sampling. However, if expres-
sions of the same structure are visible in multiple profiles, picked
locations of the structure from individual profiles can be inter-
polated. The section “Reflector picking and 3D interpolation”
shows an example of such an approach.

Data processing examples
The examples provided in this section are not intended as full

geophysical investigations but highlight select capabilities of GPRPy.
The data presented here were collected by a range of student inves-
tigators using GSSI and Sensors and Software GPR systems.

Common-offset profile. To image the interface between the
El Capitan Meadow rock avalanche deposit (Yosemite Valley,
California, USA) and the valley deposits underneath it, Liu and
Plattner (2018) collected a common-offset GPR profile (Figure 3)
in spring 2017. They used a Sensors and Software pulseEKKO
PRO system with a 50 MHz antenna. The spacing between recorded
traces was 0.6 m. Receiver and transmitter antennae were held at
an approximately constant separation of 1 m using strings, but the
rugged terrain led to small variations in antenna separation visible
in the uneven airwave arrival times in Figure 3a. A reflector is
visible in the raw data (Figure 3a), starting at the surface at approxi-
mately 10 m along the profile and dipping underground toward a
two-way traveltime of 200 ns at approximately 80 m along the
profile. However, the airwave arrivals are dominating. After dewow
(high-pass along-trace filtering), aligning individual traces by their
maximum amplitude, and subtracting the average trace from the
profile, the reflector becomes more prominent (Figure 3b). To
enhance the visibility of the reflector, I applied a t-power gain with
exponent 1.2, together with smoothing along traveltime (running-
mean replacement with window width of 10 samples, the equivalent
of a low-pass filter) and smoothing along the profile (by replacing
each trace with four copies of that trace and then applying a
running-mean replacement over six traces). The last smoothing
step led to a smoother, easier to interpret image without creating
significant artifacts. The rms velocity 0.1 m/ns was obtained as
explained in the section “Velocity analysis.” An f-k migration
additionally helped clean up the profile and corrected the dip of
the reflector between 10 and 80 m along the profile (Figure 3c).
Finally, the topographic correction from GPS points collected
every 3 m along the profile shows that the reflector is roughly
horizontal underneath the topography.

Data cube interpolation. In fall 2013, Princeton University
first-year undergraduate students collected a dense grid of GPR
profiles at an agricultural field close to a previously unearthed
archaeological site in Cyprus. The raw data consist of 92 profiles,
each 9 m long, arranged in a 46 × 46 profile grid, with 20 cm spacing
between the profiles. The students used a GSSI GPR system with
a 400 MHz antenna. Data quality of individual profiles was low
due to high clay content of the soil, but combining the profiles
revealed previously unknown structures (Figures 4 and 5). Processing
of the individual profiles was minimal and only included subtraction
of an average trace per profile and f-k migration for a velocity of
0.06 m/ns. A nearest-neighbor interpolation of the processed profiles
(Figure 4) revealed roughly 1 m thick bands of consistent reflections
at depths that are comparable to the depths of walls found in an
adjacent excavation site. The first band in Figure 4 runs between
8 m on the bottom x axis and 6 m on the top x axis. The second
band runs between 4.5 m on the left y axis and 6 m on the right y
axis but ends where it meets the first band. Based on the location,
geometry, and width of these reflectors, the investigators interpreted
these bands as buried walls. To allow for a contrast strong enough

D
ow

nl
oa

de
d

07
/0

7/
20

 to
 6

8.
62

.2
27

.5
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:

10
.1

19
0/

tle
39

05
03

32
.1

May 2020 The Leading Edge 335Special Section: Near-surface imaging and modeling

to be able to isolate the wall from its surroundings, I applied Gaussian
smoothing to the data cube (Figure 5) and visualized the result
using ParaView (Ayachit, 2015).

Interpolated picked reflectors. In fall 2017, Princeton University
students collected a number of GPR lines crossing the Dune of
Pilat in France. Time constraints restricted the students to only
collecting a small number of profiles with large gaps in between.
Hence, 3D interpolation of the profiles would not yield useful

results. The profiles shown in Figure 6 run across the dune in a
southeast direction. The linear reflectors visible in both profiles
are interpreted as arising from internal surfaces cutting across
both profiles. To create a 3D model of one of the surfaces, I used
GPRPy’s profile GUI (Figure 1) to pick points where the surface
intersects the profiles. I then interpolated these points with spline
interpolation of polynomial order 2 in the east direction and
polynomial order 1 in the north direction (Figure 6).

Velocity analysis. To obtain the rms
velocity for the study shown in the sec-
tion “Common-offset profile” (Figure 3),
Liu and Plattner (2018) collected a
WARR data set on top of the El Capitan
Meadow rock avalanche using a Sensors
and Software pulseEKKO PRO system
with 100 MHz antennae. Liu and
Plattner (2018) kept the transmitter
antenna in a fixed location, connected
the receiver antenna to a trigger wheel,
and recorded traces every 0.1 m while
moving the receiver antenna away from
the transmitter. The raw data (Figure 7a)
show linearly shaped arrival-time pat-
terns from the airwave and ground wave
and a hyperbolically shaped arrival-time
pattern from a buried reflector. To
increase the relative signal strength for
wider antennae offsets, I applied trace
normalization after dewowing the data
(Figure 7b). The stacked amplitudes for
the WARR data for linearly shaped
arrival-time patterns (Figure 2b) show
two narrow regions of high values for
early t0: one for vrms ≈ 0.1 m/ns and one
for vrms ≈ 0.3 m/ns. The slower region
corresponds to the steeply dipping
ground-wave arrival highlighted in the
data panel (Figure 2c). The faster region
corresponds to the highlighted gently
dipping airwave arrival. For later arrival

Figure 3. Example of common-offset data processing steps. (a) Raw data. (b) After trace alignment, dewow,
and mean trace removal. (c) After along-trace smoothing (window width 10 samples), t 1.2 gain, time-to-depth
conversion using an rms velocity of 0.1 m/ns, f-k migration, and along-profile smoothing (oversampling factor 4,
running-mean window width six traces). (d) After topographic correction.

Figure 4. Horizontal slice at 0.35 m depth through data cube of nearest-neighbor
interpolated profiles arranged in a 46 × 46 grid. Axes are in meters.

Figure 5. Extraction of 3D structure visible in Figure 4 through Gaussian
smoothing. Axes are in meters, vertical exaggeration is by a factor of 4.

D
ow

nl
oa

de
d

07
/0

7/
20

 to
 6

8.
62

.2
27

.5
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:

10
.1

19
0/

tle
39

05
03

32
.1

336 The Leading Edge May 2020	 		 Special Section: Near-surface imaging and modeling

times, the stacked amplitudes for linearly shaped arrival-time
patterns show smeared-out regions of high value, for which no clear
linearly shaped arrival-time patterns are visible in the data. The
stacked amplitudes for hyperbolically shaped arrival-time patterns
(Figure 2a) contain two regions of high value for vrms ≈ 0.1 m/ns
before t0 = 100 ns: one at approximately 5 ns and one at 90 ns. Later
high-value regions are smeared out, and corresponding hyperboli-
cally shaped arrival-time patterns are difficult to see in the data.
The hyperbolically shaped arrival-time pattern corresponding to
values close to vrms ≈ 0.1 m/ns and t0 ≈ 90 ns is highlighted in
Figure 2c. Liu and Plattner (2018) concluded from this investigation
that vrms ≈ 0.1 m/ns down to a reflector at a two-way traveltime of
90 ns, which corresponds to a depth of 4.5 m.

Conclusions
GPRPy is an open-source GPR software package that includes

GUIs for profile data processing and velocity analysis. Additional
functions allow for 3D data interpolation. GPRPy is scriptable
and can generate scripts automatically from the GUIs. In this
article, I highlighted the basic structure of GPRPy and provided
examples for some of the main features. The software, data sets,
and scripts to reproduce the results are publicly available. GPRPy
is available through a collaborative software-development platform,
allowing the community to adapt the software to its needs and
extend its capabilities. Researchers developing novel data processing
algorithms can implement their work in GPRPy and avoid writing
their own data import, visualization, and GUIs. Investigators
using GPRPy as a tool for data processing can submit automatically
generated scripts together with data as supplemental material with
their research articles to allow for research reproducibility.

Acknowledgments
Thanks to M. Pacheco for testing GPRPy and suggesting

improvements and to F. J. Simons and A. Fonseca for their
feedback on the article. F. J. Simons, A. C. Maloof, D. L. Cassidy
Nolan, S. Paliskara, and Z. Zhang provided the data for
Figures 1 and 6. C. Liu provided the data for Figures 2 and 3.
J. Smith and K. Ryan provided the data for Figure 5. Figures 5

and 6 were created using ParaView (Ayachit, 2015). This material
is based on work supported by the National Science Foundation
under grant no. EAR-1550732.

Data and materials availability
GPRPy is hosted on https://github.com/nsgeophysics/gprpy

and is permanently available from https://www.doi.org/10.5281/
zenodo.2556982. Installation instructions are provided at
https://nsgeophysics.github.io/gprpy/. Data and Python scripts
to reproduce the examples presented in this article are available
from https://www.doi.org/10.5281/zenodo.3357978.

Corresponding author: amplattner@ua.edu

References
Ayachit, U., 2015, The ParaView guide: A parallel visualization applica-

tion: Kitware.
Bristow, C. S., and H. M. Jol, 2003, Ground penetrating radar in sedi-

ments: Geological Society of London, https://doi.org/10.1144/GSL.
SP.2003.211.

Butnor, J. R., J. A. Doolittle, K. H. Johnsen, L. Samuelson, T. Stokes,
and L. Kress, 2003, Utility of ground-penetrating radar as a root
biomass survey tool in forest systems: Soil Science Society of America
Journal, 67, no. 5, 1607–1615, https://doi.org/10.2136/sssaj2003.1607.

Dix, C. H., 1955, Seismic velocities from surface measurements:
Geophysics, 20, no. 1, 68–86, https://doi.org/10.1190/1.1438126.

Eaton, J. W., D. Bateman, S. Hauberg, and R. Wehbring, 2019, GNU
Octave version 5.2.0 manual: A high-level interactive language for
numerical computations, https://www.gnu.org/software/octave/doc/
v5.2.0/, accessed 30 March 2020.

Goodman, D., and S. Piro, 2013, GPR remote sensing in archaeology:
Springer, https://doi.org/10.1007/978-3-642-31857-3.

Huber, E., and G. Hans, 2018, RGPR — An open-source package to
process and visualize GPR data: Proceedings of the 17th International
Conference on Ground Penetrating Radar, https://doi.org/10.1109/
ICGPR.2018.8441658.

Jol, H. M., 2008, Ground penetrating radar: Theory and applications:
Elsevier.

Figure 6. Profile lines with surface interpolated between points picked along
reflectors visible in the profiles. Axes are in meters. Figure 7. WARR data. (a) Raw data. (b) After dewow and trace normalization.

D
ow

nl
oa

de
d

07
/0

7/
20

 to
 6

8.
62

.2
27

.5
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:

10
.1

19
0/

tle
39

05
03

32
.1

May 2020 The Leading Edge 337Special Section: Near-surface imaging and modeling

Klotzsche, A., F. Jonard, M. C. Looms, J. van der Kruk, and J. A.
Huisman, 2018, Measuring soil water content with ground penetrating
radar: A decade of progress: Vadose Zone Journal, 17, no. 1, https://
doi.org/10.2136/vzj2018.03.0052.

Klysz, G., and J.-P. Balayssac, 2007, Determination of volumetric water
content of concrete using ground-penetrating radar: Cement and
Concrete Research, 37, no. 8, 1164–1171, https://doi.org/10.1016/j.
cemconres.2007.04.010.

Lai, W. W.-L., X. Dérobert, and P. Annan, 2018, A review of ground
penetrating radar application in civil engineering: A 30-year journey
from locating and testing to imaging and diagnosis: NDT & E
International, 96, 58–78, https://doi.org/10.1016/j.ndteint.
2017.04.002.

Liu, C., and A. Plattner, 2018, Near surface geophysical imaging of the
internal structure of El Capitan Meadow Rock Avalanche in Yosemite
National Park, California: Presented at Fall Meeting, AGU.

Margrave, G. F., and M. P. Lamoureux, 2019, Numerical methods of
exploration seismology: With algorithms in MATLAB: Cambridge
University Press, https://doi.org/10.1017/9781316756041.

Merz, K., A. G. Green, T. Buchli, S. M. Springman, and H. Maurer,
2015, A new 3-D thin-skinned rock glacier model based on helicopter
GPR results from the Swiss Alps: Geophysical Research Letters, 42,
no. 11, 4464–4472, https://doi.org/10.1002/2015GL063951.

Paz, C., F. J. Alcalá, J. M. Carvalho, and L. Ribeiro, 2017, Current uses
of ground penetrating radar in groundwater-dependent ecosystems
research: The Science of the Total Environment, 595, 868–885,
https://doi.org/10.1016/j.scitotenv.2017.03.210.

Pitman, S. J., H. M. Jol, J. Shulmeister, and D. E. Hart, 2019, Storm
response of a mixed sand gravel beach ridge plain under falling relative

sea levels: A stratigraphic investigation using ground penetrating
radar: Earth Surface Processes and Landforms, 44, no. 8, 1610–1617,
https://doi.org/10.1002/esp.4598.

Ramachandran, P., and G. Varoquaux, 2011, Mayavi: 3D visualization
of scientific data: Computing in Science & Engineering, 13, no. 2,
40–51, https://doi.org/10.1109/MCSE.2011.35.

Rubin, Y., and S. S. Hubbard, 2005, Hydrogeophysics: Springer.
Stolt, R. H., 1978, Migration by Fourier transform: Geophysics, 43, no.

1, 23–48, https://doi.org/10.1190/1.1440826.
Tzanis, A., 2006, MATGPR: A freeware MATLAB package for the

analysis of common-offset GPR data: Geophysical Research Abstracts,
8, EGU06–A-09488.

Urban, T. M., J. F. Leon, S. W. Manning, and K. D. Fisher, 2014, High
resolution GPR mapping of Late Bronze Age architecture at
Kalavasos-Ayios Dhimitrios, Cyprus: Journal of Applied Geophysics,
107, 129–136, https://doi.org/10.1016/j.jappgeo.2014.05.020.

Wilson, N., 2017, Irlib version v0.4.1, https://doi.org/10.5281/
zenodo.439723.

Wilson, N. J., G. E. Flowers, and L. Mingo, 2013, Comparison of
thermal structure and evolution between neighboring subarctic
glaciers: Journal of Geophysical Research, 118, no. 3, 1443–1459,
https://doi.org/10.1002/jgrf.20096.

Wilson, V., C. Power, A. Giannopoulos, J. Gerhard, and G. Grant, 2009,
DNAPL mapping by ground penetrating radar examined via numerical
simulation: Journal of Applied Geophysics, 69, no. 3-4, 140–149,
https://doi.org/10.1016/j.jappgeo.2009.08.006.

Yilmaz, Ö., 2001, Seismic data analysis: Processing, inversion, and
interpretation of seismic data: Society of Exploration Geophysicists,
https://doi.org/10.1190/1.9781560801580.

D
ow

nl
oa

de
d

07
/0

7/
20

 to
 6

8.
62

.2
27

.5
6.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:

10
.1

19
0/

tle
39

05
03

32
.1

