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GPRPy: Open-source ground-penetrating radar 
processing and visualization software

Abstract
GPRPy is an open-source ground-penetrating radar software 

compatible with a range of ground-penetrating radar systems. 
Data processing and plotting can be performed by using graphical 
user interfaces or scripts that are generated automatically from 
the graphical user interfaces. This makes learning the software 
easy, and it enables researchers to share their scripts as part of a 
publication to ensure reproducible research. GPRPy enables profile 
data processing and visualization, velocity analysis, interpolation 
of 3D data cubes from profile data, and 3D interpolation for 
interfaces visible in multiple profiles. The software is written in 
Python and runs on all major operating systems.

Introduction
Since its original patents a century ago, ground-penetrating 

radar (GPR) has become one of the most popular methods to 
image shallow subsurface structures. GPR owes its popularity to 
relatively low cost in the field and high subsurface resolution 
compared to other geophysical methods. As a result, GPR has 
been a staple for archaeological surveys (e.g., Goodman and Piro, 
2013; Urban et al., 2014), stratigraphy (e.g., Bristow and Jol, 2003; 
Pitman et al., 2019), hydrology (e.g., Rubin and Hubbard, 2005; 
Klotzsche et al., 2018), contaminant mapping (e.g., Wilson et al., 
2009), soil science (e.g., Butnor et al., 2003), glaciers and ice sheets 
(e.g., Merz et al., 2015), civil engineering (e.g., Klysz and Balayssac, 
2007; Lai et al., 2018), and ecosystems research (e.g., Paz et al., 
2017). Jol (2008) provides an excellent overview of theory and 
applications of GPR.

Many GPR investigations do not require advanced processing 
to yield useful results. Nevertheless, the majority of GPR research 
publications use proprietary closed-source software provided by 
the GPR system manufacturer or independent packages (Jol, 
2008). Reliance on proprietary software has a number of inherent 
disadvantages. First, the software has limited flexibility and 
does not fully allow users to adapt it to their needs. Second, 
reproducible research is limited. To recreate the processing steps 
published in an article, researchers need to have access to the 
proprietary software. This limitation will become increasingly 
severe as publishers and funding agencies push for transparent 
research. Third, courses teaching GPR processing are restricted 
by access to proprietary software.

Open-source software aims to overcome these obstacles. In 
recent years, a small number of open-source GPR processing and 
visualization packages have become available. Among these 
packages, MATGPR (Tzanis, 2006) is likely the most prominent. 
It has been available for more than a decade and includes a graphical 
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user interface (GUI). MATGPR recently became closed source, 
but older open-source versions may still be available. 

A disadvantage of MATGPR and other MATLAB-based 
GPR programs is that they require MATLAB, a proprietary 
software. Freely available MATLAB-like alternatives, such as 
Octave (Eaton et al., 2019), are typically incompatible with 
MATLAB GUIs. In general, GUIs greatly facilitate learning 
processing software. However, if a software is purely GUI controlled 
and cannot be automated, such as through computer scripts contain-
ing the processing and visualization steps, large-scale projects that 
require processing a large number of profiles are rendered unneces-
sarily tedious, and reproducible research is made more difficult. 

On the other end of the open-source GPR software spectrum 
lies the recently published package RGPR (Huber and Hans, 
2018), which is based on the programming language R. Instead 
of using a GUI, RGPR requires investigators to write scripts in 
R. Consequently, the learning curve for mastering RGPR is steep 
for investigators with little programming experience. 

Irlib (Wilson et al., 2013; Wilson, 2017), another open-source 
GPR software, is Python based. It has a GUI for picking and 
data filtering Blue System IceRadar data files, but it requires the 
user to write Python scripts to process Sensors and Software (.dt1) 
files. As is the case of RGPR, this may impede users with little 
programming experience.

The aim of GPRPy is to provide a GPR processing and visualiza-
tion platform that is freely available, powerful, easy to use, program-
mable, expandable, and that facilitates reproducible research. GPRPy 
is built on the free programming language Python (version 3). Hence, 
it can be used without requiring a proprietary programming environ-
ment such as MATLAB. Python, and therefore GPRPy, are compat-
ible with a wide range of operating systems. 

GPRPy’s data processing is optimized for speed and memory 
consumption by making use of data structures and functions 
from Python’s NumPy module. The implemented GUIs (one 
for profile data processing and one for velocity analysis) simplify 
learning the software. Both GPRPy GUIs have the ability to 
automatically create Python scripts by internally storing the 
processing steps used in the GUI. The automatically generated 
Python scripts, together with the raw data, can be shared to 
allow researchers to reproduce the data processing and visualiza-
tion steps carried out for an investigation. GPRPy is hosted on 
a collaborative software-developing website given in the section 
“Data and materials availability.” This allows the community 
to use GPRPy as a base code for implementing their own data 
processing procedures and to make them instantly available. 
The current version of GPRPy can import radar data from 
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Sensors and Software GPR systems (.dt1 files), GSSI (.dzt files), 
MALÅ (.rd3 files), and ENVI standard BSQ files. The remain-
der of this article highlights some of the currently implemented 
processing and visualization procedures and provides data 
processing examples. 

Software design
The GPRPy software package consists of two GUIs, one for 

profile data processing (Figure 1) and one for common-midpoint 
(CMP) or wide-angle reflection and refraction (WARR) data 
(Figure 2). The package also includes a series of functions for 
more advanced processing, such as the generation of 3D data 
cubes by interpolating profiles, interpolation of surfaces between 
picked points, and merging profiles. The computer code for the 
GUI is separated from the computer code that implements the 
data processing and visualization. This separation allows users to 
write Python code that directly accesses all of GPRPy’s capabilities 
without needing to use the GUI. GPRPy exploits this separation 
through its automatically generated scripts.

GPRPy’s constant-velocity f-k migration routine is incorporated 
from the software package Irlib (Wilson et al., 2013; Wilson, 2017) 

and is a Python translation of the original MATLAB code by 
Margrave and Lamoureux (2019). This migration method was origi-
nally introduced by Stolt (1978) for seismic data processing. Migration 
can remove artifacts resulting from arrivals that were not reflected 
perpendicularly below the transmitter receiver midpoint (Yilmaz, 
2001). Among other things, a migration procedure leads to collapsing 
of hyperbolae caused by reflections from spatially confined objects, 
transformation of bow ties into synclines, and correction of dipping 
angles of reflectors. As a result, a migrated profile more closely 
resembles a geologic cross section than an unmigrated profile.

Common-offset profiles. Common-offset profiling, the most 
widely used GPR data acquisition scheme, involves moving trans-
mitter and receiver antennae with fixed separation (offset) along a 
profile line. Three-dimensional data cubes are typically created by 
running parallel and intersecting profiles, processing the profiles 
individually, and then interpolating the processed profiles. GPRPy’s 
profile GUI (Figure 1) enables the most commonly used processing 
steps. Subsurface velocities can be estimated by fitting hyperbolae 
to reflections from pipes or other spatially confined objects. 
Structures visible in a profile can be picked from within the GUI 
and exported into an ASCII file. If the profile has been topographi-

cally corrected using 3D coordinates, the 
picked points will additionally be 
exported as 3D coordinates, with loca-
tions interpolated between the 3D profile 
coordinates. The 3D coordinates of the 
picked points can later be used to create 
surfaces interpolating the same reflector 
that was imaged in different profiles. The 
section “Interpolated picked reflectors” 
shows an example of such an approach. 
GPRPy can export profiles as 3D struc-
tured grid files, which can be visualized 
with ParaView (Ayachit, 2015), MayaVi 
(Ramachandran and Varoquaux, 2011), 
or other 3D rendering programs capable 
of reading VTK files.

Velocity analysis from CMP/WARR 
data. All GPR studies require knowl-
edge of a subsurface velocity to trans-
form two-way traveltime to depth. 
The time-to-depth transformation 
currently implemented in GPRPy 
assumes a single average velocity to 
the target depth, such as the root mean 
square (rms) velocity by Dix (1955). 
This velocity can be obtained from 
tables, by fitting hyperbolae to profiles 
crossing buried pipes or other spatially 
confined reflectors, or through CMP 
or WARR surveys. In a CMP survey, 
transmitter and receiver antennae are 
placed on either side of a designated 
midpoint and are subsequently moved 
equidistantly away while recording 
traces. In a WARR survey, either the 

Figure 1. GUI for GPR common-offset profile data processing.

Figure 2. GUI for velocity analysis from CMP or WARR data. (a) Stacked amplitudes for hyperbolically shaped 
arrival-time patterns. (b) Stacked amplitudes for linearly shaped arrival-time patterns. (c) CMP or WARR data.
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transmitter or receiver antenna is fixed, and the other antenna 
is moved increasingly away while recording traces. In WARR 
and CMP data sets for flat topography, airwave and ground-
wave arrival times depend linearly on the antenna separation. 
The slope of this linear relationship is 1/v, where v represents 
the velocity of the air or the average velocity of the shallowest 
portion of the ground. Reflections from horizontal interfaces 
have a hyperbolic shape given by t = x2 + 4d 2 / vrms . Here, x 
is the antennae separation, t is the two-way traveltime, d is the 
depth to the horizontal reflector, and vrms is the average velocity 
between the surface and reflecting interface. GPRPy’s velocity 
analysis GUI for CMP or WARR data (Figure 2) enables users 
to draw lines and hyperbolae on top of the data to estimate 
velocities using a trial-and-error approach. A coherency analysis 
presents an automatized approach for velocity determination. 
The implemented stacked amplitude analysis calculates the 
sum over all pixels in the CMP or WARR data that follow the 
idealized linearly or hyperbolically shaped arrival-time pattern 
for a given vrms and t0 . If all pixels along the theoretical line or 
hyperbola have the same sign, such as when following a line 
or hyperbola visible in the data, then the sum of the pixel values 
has a large magnitude. On the other hand, if the pixel values 
switch signs, for example when the theoretical line or hyperbola 
crosses troughs and peaks of recorded waves, the resulting 
stacked amplitude has a low absolute value. The center and left 
panel of GPRPy’s CMP/WARR GUI, as shown in 
Figures 2a and 2b, displays stacked amplitudes for linearly or 
hyperbolically shaped arrival-time patterns, respectively, for 
a chosen range of vrms and t0 .

Automatic script generation. While using either the GUI for 
common-offset data or the GUI for CMP/WARR data, GPRPy 
stores each processing step and can generate a Python script 
containing the Python commands for each step. This script can 
be run from the command line to reproduce all of the data import, 
processing, visualization, and export steps. Users can edit indi-
vidual processing steps and rerun the analysis without needing 
to repeat every step in the GUI. Such scripts, together with the 
raw data, could be shared as part of a publication. Since GPRPy 
is open source and can be installed on any system that can run 
Python, data processing becomes fully reproducible. Another 
advantage of automatically created scripts is that they can be used 
to automatically apply the same processing to a number of profiles 
(e.g., to create a 3D data cube).

Three-dimensional data. If a set of densely spaced and/or 
intersecting profiles is available, GPRPy can create a 3D data 
cube by interpolating the provided profiles and exporting the 
resulting data cube as a VTK file. The section “Data cube inter-
polation” shows a nearest-neighbor interpolation of a dense grid 
of 46 × 46 profiles collected for an archaeological study. When 
multiple profiles are available but are not densely spaced, 3D 
interpolation may not be suited, as it could create misleading 
artifacts due to unevenly distributed sampling. However, if expres-
sions of the same structure are visible in multiple profiles, picked 
locations of the structure from individual profiles can be inter-
polated. The section “Reflector picking and 3D interpolation” 
shows an example of such an approach.

Data processing examples
The examples provided in this section are not intended as full 

geophysical investigations but highlight select capabilities of GPRPy. 
The data presented here were collected by a range of student inves-
tigators using GSSI and Sensors and Software GPR systems.

Common-offset profile. To image the interface between the 
El Capitan Meadow rock avalanche deposit (Yosemite Valley, 
California, USA) and the valley deposits underneath it, Liu and 
Plattner (2018) collected a common-offset GPR profile (Figure 3) 
in spring 2017. They used a Sensors and Software pulseEKKO 
PRO system with a 50 MHz antenna. The spacing between recorded 
traces was 0.6 m. Receiver and transmitter antennae were held at 
an approximately constant separation of 1 m using strings, but the 
rugged terrain led to small variations in antenna separation visible 
in the uneven airwave arrival times in Figure 3a. A reflector is 
visible in the raw data (Figure 3a), starting at the surface at approxi-
mately 10 m along the profile and dipping underground toward a 
two-way traveltime of 200 ns at approximately 80 m along the 
profile. However, the airwave arrivals are dominating. After dewow 
(high-pass along-trace filtering), aligning individual traces by their 
maximum amplitude, and subtracting the average trace from the 
profile, the reflector becomes more prominent (Figure 3b). To 
enhance the visibility of the reflector, I applied a t-power gain with 
exponent 1.2, together with smoothing along traveltime (running-
mean replacement with window width of 10 samples, the equivalent 
of a low-pass filter) and smoothing along the profile (by replacing 
each trace with four copies of that trace and then applying a 
running-mean replacement over six traces). The last smoothing 
step led to a smoother, easier to interpret image without creating 
significant artifacts. The rms velocity 0.1 m/ns was obtained as 
explained in the section “Velocity analysis.” An f-k migration 
additionally helped clean up the profile and corrected the dip of 
the reflector between 10 and 80 m along the profile (Figure 3c). 
Finally, the topographic correction from GPS points collected 
every 3 m along the profile shows that the reflector is roughly 
horizontal underneath the topography.

Data cube interpolation. In fall 2013, Princeton University 
first-year undergraduate students collected a dense grid of GPR 
profiles at an agricultural field close to a previously unearthed 
archaeological site in Cyprus. The raw data consist of 92 profiles, 
each 9 m long, arranged in a 46 × 46 profile grid, with 20 cm spacing 
between the profiles. The students used a GSSI GPR system with 
a 400 MHz antenna. Data quality of individual profiles was low 
due to high clay content of the soil, but combining the profiles 
revealed previously unknown structures (Figures 4 and 5). Processing 
of the individual profiles was minimal and only included subtraction 
of an average trace per profile and f-k migration for a velocity of 
0.06 m/ns. A nearest-neighbor interpolation of the processed profiles 
(Figure 4) revealed roughly 1 m thick bands of consistent reflections 
at depths that are comparable to the depths of walls found in an 
adjacent excavation site. The first band in Figure 4 runs between 
8 m on the bottom x axis and 6 m on the top x axis. The second 
band runs between 4.5 m on the left y axis and 6 m on the right y 
axis but ends where it meets the first band. Based on the location, 
geometry, and width of these reflectors, the investigators interpreted 
these bands as buried walls. To allow for a contrast strong enough 
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to be able to isolate the wall from its surroundings, I applied Gaussian 
smoothing to the data cube (Figure 5) and visualized the result 
using ParaView (Ayachit, 2015).

Interpolated picked reflectors. In fall 2017, Princeton University 
students collected a number of GPR lines crossing the Dune of 
Pilat in France. Time constraints restricted the students to only 
collecting a small number of profiles with large gaps in between. 
Hence, 3D interpolation of the profiles would not yield useful 

results. The profiles shown in Figure 6 run across the dune in a 
southeast direction. The linear reflectors visible in both profiles 
are interpreted as arising from internal surfaces cutting across 
both profiles. To create a 3D model of one of the surfaces, I used 
GPRPy’s profile GUI (Figure 1) to pick points where the surface 
intersects the profiles. I then interpolated these points with spline 
interpolation of polynomial order 2 in the east direction and 
polynomial order 1 in the north direction (Figure 6).

Velocity analysis. To obtain the rms 
velocity for the study shown in the sec-
tion “Common-offset profile” (Figure 3), 
Liu and Plattner (2018) collected a 
WARR data set on top of the El Capitan 
Meadow rock avalanche using a Sensors 
and Software pulseEKKO PRO system 
with 100 MHz antennae. Liu and 
Plattner (2018) kept the transmitter 
antenna in a fixed location, connected 
the receiver antenna to a trigger wheel, 
and recorded traces every 0.1 m while 
moving the receiver antenna away from 
the transmitter. The raw data (Figure 7a) 
show linearly shaped arrival-time pat-
terns from the airwave and ground wave 
and a hyperbolically shaped arrival-time 
pattern from a buried reflector. To 
increase the relative signal strength for 
wider antennae offsets, I applied trace 
normalization after dewowing the data 
(Figure 7b). The stacked amplitudes for 
the WARR data for linearly shaped 
arrival-time patterns (Figure 2b) show 
two narrow regions of high values for 
early t0: one for vrms ≈ 0.1 m/ns and one 
for vrms ≈ 0.3 m/ns. The slower region 
corresponds to the steeply dipping 
ground-wave arrival highlighted in the 
data panel (Figure 2c). The faster region 
corresponds to the highlighted gently 
dipping airwave arrival. For later arrival 

Figure 3. Example of common-offset data processing steps. (a) Raw data. (b) After trace alignment, dewow, 
and mean trace removal. (c) After along-trace smoothing (window width 10 samples), t 1.2 gain, time-to-depth 
conversion using an rms velocity of 0.1 m/ns, f-k migration, and along-profile smoothing (oversampling factor 4, 
running-mean window width six traces). (d) After topographic correction.

Figure 4. Horizontal slice at 0.35 m depth through data cube of nearest-neighbor 
interpolated profiles arranged in a 46 × 46 grid. Axes are in meters.

Figure 5. Extraction of 3D structure visible in Figure 4 through Gaussian 
smoothing. Axes are in meters, vertical exaggeration is by a factor of 4.
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times, the stacked amplitudes for linearly shaped arrival-time 
patterns show smeared-out regions of high value, for which no clear 
linearly shaped arrival-time patterns are visible in the data. The 
stacked amplitudes for hyperbolically shaped arrival-time patterns 
(Figure 2a) contain two regions of high value for vrms ≈ 0.1 m/ns 
before t0  = 100 ns: one at approximately 5 ns and one at 90 ns. Later 
high-value regions are smeared out, and corresponding hyperboli-
cally shaped arrival-time patterns are difficult to see in the data. 
The hyperbolically shaped arrival-time pattern corresponding to 
values close to vrms ≈ 0.1 m/ns and t0 ≈ 90 ns is highlighted in 
Figure 2c. Liu and Plattner (2018) concluded from this investigation 
that vrms ≈ 0.1 m/ns down to a reflector at a two-way traveltime of 
90 ns, which corresponds to a depth of 4.5 m.

Conclusions
GPRPy is an open-source GPR software package that includes 

GUIs for profile data processing and velocity analysis. Additional 
functions allow for 3D data interpolation. GPRPy is scriptable 
and can generate scripts automatically from the GUIs. In this 
article, I highlighted the basic structure of GPRPy and provided 
examples for some of the main features. The software, data sets, 
and scripts to reproduce the results are publicly available. GPRPy 
is available through a collaborative software-development platform, 
allowing the community to adapt the software to its needs and 
extend its capabilities. Researchers developing novel data processing 
algorithms can implement their work in GPRPy and avoid writing 
their own data import, visualization, and GUIs. Investigators 
using GPRPy as a tool for data processing can submit automatically 
generated scripts together with data as supplemental material with 
their research articles to allow for research reproducibility. 
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